
Journal of Heuristics, 10: 525–545, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Slope Scaling/Lagrangean Perturbation Heuristic
with Long-Term Memory for Multicommodity
Capacitated Fixed-Charge Network Design

TEODOR GABRIEL CRAINIC
Département de management et technologie, École des Sciences de la gestion, Université du Québec à Montréal,
C.P. 8888, succursale Centre-ville, Montréal, Québec, Canada H3C 3P8; Centre de recherche sur les transports,
Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
email: theo@crt.umontreal.ca

BERNARD GENDRON
Centre de recherche sur les transports, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal,
Québec, Canada H3C 3J7; Département d’informatique et de recherche opérationnelle, Université de Montréal,
C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
email: bernard@crt.umontreal.ca

GENEVIÈVE HERNU
Centre de recherche sur les transports, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal,
Québec, Canada H3C 3J7
email: hernu@crt.umontreal.ca

Submitted in February 2003 and accepted by Steve Chiw in February 2004 after 1 revision

Abstract

This paper describes a slope scaling heuristic for solving the multicomodity capacitated fixed-charge network
design problem. The heuristic integrates a Lagrangean perturbation scheme and intensification/diversification
mechanisms based on a long-term memory. Although the impact of the Lagrangean perturbation mechanism
on the performance of the method is minor, the intensification/diversification components of the algorithm are
essential for the approach to achieve good performance. The computational results on a large set of randomly
generated instances from the literature show that the proposed method is competitive with the best known heuristic
approaches for the problem. Moreover, it generally provides better solutions on larger, more difficult, instances.

Key Words: slope scaling, Lagrangean heuristic, long-term memory, multicommodity capacitated fixed-charge
network design

We consider the multicommodity capacitated fixed-charge network design problem (MCFP),
which can be described as follows. We denote by G = (N , A, K) a directed network, where
N is the set of nodes, A is the set of arcs, and K is the set of commodities, or origin-destination
pairs. For each commodity k ∈ K , we denote by dk the positive demand that must flow
between the origin O(k) ∈ N and the destination D(k) ∈ N . We associate a positive capacity
ui j to each arc (i, j) ∈ A and assume that ui j ≤ ∑

k∈K dk . A nonnegative fixed cost fi j

526 CRAINIC, GENDRON AND HERNU

is charged when arc (i, j) is used. A nonnegative transportation cost ck
i j has to be paid for

each unit of commodity k moving through arc (i, j). The problem consists in minimizing
the sum of all costs, while satisfying demand requirements and capacity constraints.

MCFP is NP-hard and is usually formulated as a mixed-integer programming (MIP)
model (for surveys on complexity results and MIP techniques applied to MCFP, and
other related network design problems, see Magnanti and Wong (1984), Minoux (1989),
Balakrishnan, Magnanti, and Mirchandani (1997) and Gendron, Crainic, and Frangioni
(1999)). In particular, some efforts have been devoted to design efficient solution tech-
niques for MCFP based on Lagrangean relaxation (Crainic, Frangioni, and Gendron, 2001;
Gendron and Crainic, 1994, 1996; Gendron, Crainic, and Frangioni, 1999; Holmberg and
Yuan, 2000). To complement these Lagrangean bounding procedures, effective heuristics
should be used to derive good feasible solutions. Crainic, Gendreau, and Fravolden (2000)
propose a tabu search heuristic based on a path formulation of the problem, where simplex
pivots define the neighborhoods, and new paths are dynamically added to the formulation
using a column generation approach (we assume familiarity of the reader with the principles
of tabu search; for further details, see Glover and Laguna (1997)). Ghamlouche, Crainic, and
Gendreau (2003) present a different tabu search heuristic based on an arc formulation of the
problem, where the neighborhoods are obtained by moving flows around cycles. This ap-
proach has recently been improved by adding a path relinking search (Ghamlouche, Crainic,
and Gendreau, 2004). The resulting heuristic is currently the most effective for MCFP, since
for a large set of randomly generated instances, it generally displays the smallest gap with
respect to the optimal solution or, when the latter is unknown, it generally identifies the best
known solution.

In this paper, we propose a different heuristic based on the idea of slope scaling (see Kim
and Pardalos (1999, 2000a, 2000b) for recent implementations of this idea for solving non-
convex piecewise linear network flow problems and special cases, and Yaged (1971) for an
earlier approach based on similar ideas). The Slope Scaling (SS) procedure is an iterative
scheme that consists in solving a linear approximation of the original formulation at each
iteration. The costs of each linear approximation are adjusted in order to reflect the exact
costs (both linear and fixed) incurred by the solution at the previous iteration. The iterations
proceed until two successive solutions are identical. At this point, the linear approximation
costs of the final solution correspond to the true objective function value, given by the sum
of the original transportation and fixed costs. Although this procedure allows to identify
fairly good solutions in a short amount of time, it might stop relatively far from an optimal
solution. In order to improve its performance, we propose to combine it with two features,
inspired from the literature on heuristics: Lagrangean perturbation and long-term memory.

The Lagrangean perturbation (LP) scheme assumes that the SS heuristic is performed
concurrently with a Lagrangean bounding procedure, which provides dual values and re-
duced cost information. At every iteration of the SS procedure, the formula for computing
the linear approximation costs is modified by taking into account the current values of the
Lagrangean multipliers. The SS heuristic and the Lagrangean bounding procedure alternate
at regular intervals (determined by a parameter), which allows to produce more variability in
the process than, for example, performing SS iterations only after the Lagrangean bounding
procedure has converged to an optimal value.

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 527

The resulting Slope Scaling/Lagrangean perturbation (SS/LP) heuristic explores more
solutions, and generally identifies better ones, than the simple SS procedure. However, a
careful examination of the solutions visited by the SS/LP heuristic reveals that the trajec-
tories it produces remain around those obtained by the simple SS procedure (see Section 6
for computational evidence). As a result, even though the procedure usually continues to
progress while the SS heuristic has already stopped, its final solution might also remain
far from an optimal one for many instances. To improve its performance, we decompose
the heuristic into multiple phases, each phase corresponding to one execution of the SS/LP
procedure, which is stopped when no significant progress is obtained. Each phase starts
with linear approximation costs modified by using a long-term memory that stores informa-
tion gathered from all past iterations. We propose various intensification and diversification
mechanisms based on this long-term memory. The experimental results demonstrate that
the overall approach explores effectively the set of feasible solutions, particularly so for
problem instances with large number of commodities. Indeed, on the largest and most dif-
ficult instances, the proposed heuristic is competitive with the tabu search/path relinking
approach of Ghamlouche, Crainic, and Gendreau (2004), and it even identifies the best
known solution for some instances.

To sum up, the main contribution of this work is to propose a new heuristic approach
for MCFP that combines slope scaling, Lagrangean relaxation, and learning capabilities
inspired by meta-heuristics. It thus contributes to the emerging and promising field of
hybrid heuristics that bring together mathematical programming approaches and meta-
heuristic methodologies.

The paper is organized as follows. Section 1 presents the mathematical formulation of
MCFP, which is used throughout the paper to define the heuristic framework. In Section 2,
we describe the SS procedure, while in Section 3, we provide the details of the SS/LP
procedure. Section 4 is dedicated to the long-term memory approach and its intensification
and diversification mechanisms. The overall procedure, which we denote SS/LP/LM, is
then summarized in Section 5. Results of extensive experiments on a large set of randomly
generated test problems with various characteristics are presented and analyzed in Section 6.
We conclude the paper with a summary of its main contributions and a discussion of avenues
for future research.

1. Formulation and heuristic framework

The arc formulation of MCFP uses two types of variables. First, nonnegative flow variables
xk

i j represent the flow of commodity k ∈ K on arc (i, j) ∈ A. Second, binary design
variables yi j assume value 1 whenever arc (i, j) ∈ A is used, and value 0 otherwise. The
problem is then formulated as follows, where bk

i j = min{ui j , dk}, ∀(i, j) ∈ A, k ∈ K :

Z (MCFP) = min
∑
k∈K

∑
(i, j)∈A

ck
i j x

k
i j +

∑
(i, j)∈A

fi j yi j , (1)

∑
j∈N

xk
i j −

∑
j∈N

xk
ji =

dk, if i = O(k),

− dk, if i = D(k),

0, if i �= O(k), D(k),

∀ i ∈ N , k ∈ K , (2)

528 CRAINIC, GENDRON AND HERNU

∑
k∈K

xk
i j ≤ ui j yi j , ∀ (i, j) ∈ A, (3)

xk
i j ≤ bk

i j yi j , ∀ (i, j) ∈ A, k ∈ K , (4)

xk
i j ≥ 0, ∀ (i, j) ∈ A, k ∈ K , (5)

yi j ∈ {0, 1}, ∀ (i, j) ∈ A. (6)

Equations (2) are the usual flow conservation constraints for multicommodity networks. The
capacity constraints (3) ensure that no flow circulates when an arc is not used. The same is
achieved by relations (4) which are therefore redundant, but are added to the formulation in
order to improve the quality of the Lagrangean relaxations derived from it (see Section 3,
for further details).

The heuristic procedures we present are based on solving a succession of linear multi-
commodity minimum cost network flow problems, each defined by a vector of linearization
factors ρ and denoted MMCF(ρ):

Z (MMCF(ρ)) = min
∑
k∈K

∑
(i, j)∈A

(
ck

i j + ρk
i j

)
xk

i j , (7)

subject to flow conservation constraints, (2) non negativity constraints, (5) and capacity
constraints

∑
k∈K

xk
i j ≤ ui j , ∀ (i, j) ∈ A. (8)

When a feasible solution x̃ to MMCF(ρ) is obtained, one can easily derive a feasible solution
to MCFP by setting the design variables to

ỹi j =

1, if
∑
k∈K

x̃k
i j > 0,

0, otherwise,
∀ (i, j) ∈ A. (9)

An upper bound on Z (MCFP) is then computed as

Z (x̃, ỹ) =
∑
k∈K

∑
(i, j)∈A

ck
i j x̃

k
i j +

∑
(i, j)∈A

fi j ỹi j . (10)

The heuristics that we describe next only differ in the way they define ρ, the vector of
linearization factors.

2. Slope scaling (SS)

The SS procedure begins by solving a multicommodity minimum cost network flow prob-
lem, MMCF(ρ(0)), with some initial value of ρ = ρ(0). The approximation ρk

i j (0) =

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 529

fi j/ui j , ∀(i, j) ∈ A, k ∈ K , provides an effective initial solution (Kim and Pardalos,
1999).

Let t denote the iteration counter. Given an optimal solution x̃ to problem MMCF(ρ(t)),
the next value ρ(t + 1) is determined so as to reflect the exact costs. More precisely, for any
arc (i, j), if

∑
k∈K x̃k

i j > 0, we must satisfy

∑
k∈K

(
ck

i j + ρk
i j (t + 1)

)
x̃ k

i j =
∑
k∈K

ck
i j x̃

k
i j + fi j . (11)

On the other hand, when
∑

k∈K x̃k
i j = 0, ρk

i j (t + 1) must equal some large value, for each
k ∈ K . In this case, we propose to use the cost at the previous iteration, which was clearly
large enough for that arc and commodity pair to incur no flow. In general, it is not desirable
to set the cost to a very large value, because this would virtually forbid that particular arc-
commodity pair to be subsequently used, thus reducing the set of solutions explored (Kim
and Pardalos, 1999).

To satisfy these conditions, we use the following update of ρ at every iteration t > 0
(similar rules in a single-commodity setting are proposed in Kim and Pardalos, 1999):

ρk
i j (t) =

fi j

/ ∑
k∈K

x̃k
i j , if x̃ k

i j > 0,

ρk
i j (t − 1), otherwise,

∀ (i, j) ∈ A, k ∈ K . (12)

Problem MMCF(ρ(t)) is then solved again, and the two steps, adjustment of ρ and solution
of the corresponding multicommodity minimum cost network flow problem, are repeated
until a maximum number of iterations, tmax > 0, is achieved. Note that Kim and Pardalos
(1999) propose to stop the procedure when two successive solutions are identical, which
is indeed a sound stopping criterion. Since the SS heuristic is a special case of the overall
SS/LP/LM approach presented in Section 5, we defer until then the discussion on other
stopping rules. To summarize, the SS heuristic proceeds as follows, where Z∗ is the best
known upper bound on Z (MCFP):

1. Set Z∗ = +∞, t = 0 and ρk
i j (t) = fi j/ui j ∀(i, j) ∈ A, k ∈ K .

2. Solve MMCF(ρ(t)); let x̃ be the optimal solution and Z (t) = Z (x̃, ỹ) the corresponding
upper bound, computed using (9) and (10).

3. If Z∗ > Z (t), then Z∗ = Z (t).
4. t = t + 1.
5. If t = tmax, stop the procedure.
6. Update ρ(t) using formula (12), and go to Step 2.

3. Lagrangean perturbation (LP)

When the SS procedure identifies the same solution on two consecutive iterations, it makes
no further progress, since ρ retains the same values. In order to allow more variability in
the adjustment of ρ, we propose to perturb the linearization factors using dual information

530 CRAINIC, GENDRON AND HERNU

available from some relaxation of MCFP. More precisely, the SS iterations will alternate
with some relaxation procedure that provides updated dual information, which is then used
to adjust the linearization factors.

Denote by π , α ≥ 0 and β ≥ 0 the vectors of dual variables associated to constraints (2),
(3) and (4), respectively. The dual information is then given by:

�k
i j = π k

i − π k
j + αi j + βk

i j , ∀(i, j) ∈ A, k ∈ K . (13)

Note that ck
i j +�k

i j corresponds to the reduced cost associated to xk
i j in the standard linear pro-

gramming (LP) relaxation of MCFP. To obtain this dual information, we use a Lagrangean
relaxation procedure where the Lagrangean dual is optimized with a bundle method, an
approach that has shown its superiority when compared to subgradient methods (Crainic,
Frangioni, and Gendron, 2001).

Two different Lagrangean relaxations are compared (see Section 6). The first is the
shortest path (SP) relaxation, which consists in relaxing constraints (3) and (4), yielding
the following Lagrangean subproblem:

Z (α, β) = min
∑

(i, j)∈A

∑
k∈K

(
ck

i j + αi j + βk
i j

)
xk

i j (14)

+
∑

(i, j)∈A

(
fi j − ui jαi j −

∑
k∈K

bk
i jβ

k
i j

)
yi j , (15)

subject to constraints (2), (5), and (6). This subproblem decomposes into a shortest path
problem for each commodity, and a problem expressed with the design variables only, which
is solvable by simple inspection of the signs of the costs. When using this relaxation, note
that the current values of α and β are provided by the bundle algorithm, which is in charge
of the adjustment of the Lagrangean multipliers, while the current values of π are given by
the shortest path subproblem, i.e., π k

i then represents the length of the shortest path (with
respect to the Lagrangean costs) from O(k) to i (Crainic, Frangioni, and Gendron, 2001).

The second Lagrangean relaxation consists in relaxing the flow conservation constraints,
(2), which yields the following Lagrangean subproblem:

Z (π) = min
∑

(i, j)∈A

∑
k∈K

(
ck

i j + π k
i − π k

j

)
xk

i j +
∑

(i, j)∈A

fi j yi j +
∑
k∈K

dk
(
π k

D(k) − π k
O(k)

)
,

(16)

subject to constraints (3) to (6). This problem decomposes into |A| subproblems, one for
each arc, which can be easily solved by considering the two possible alternatives, yi j = 0
and yi j = 1, and by selecting the cheapest one. We note that if yi j = 0, the problem is
trivially solved (in this case, xk

i j = 0, ∀k ∈ K), while if yi j = 1, the problem reduces to
a continuous knapsack problem, which is easily solvable by sorting the costs. Hence, we
give the name continuous knapsack (CK) to this relaxation. Note that the current values of
π are provided by the bundle method, while those of α and β are derived from the solution
of the last Lagrangean subproblem (Crainic, Frangioni, and Gendron, 2001).

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 531

At every iteration t > 0 of the slope scaling procedure, given the solution x̃ computed
at the previous iteration, we incorporate the dual information provided by any of these two
relaxations using the following formula:

ρk
i j (t) =

�k
i j +

(
fi j −

∑
k∈K

�k
i j x̃

k
i j

)/ ∑
k∈K

x̃k
i j , if x̃ k

i j > 0,

ρk
i j (t − 1), otherwise,

∀ (i, j) ∈ A, k ∈ K .

(17)

It is easy to verify that this update of the linearization factors satisfies relation (11), i.e., it
maintains the same interpretation of reflecting the exact costs if the solution to MMCF(ρ)
is x̃ .

Two additional parameters are needed to characterize the SS procedure that incorporates
Lagrangean perturbation, which we denote SS/LP. To decide when to update the dual
information, we count the number of SS/LP iterations performed without improving the
best upper bound found since the last update of the dual information. When this value is equal
to tLP

max > 0, the Lagrangean bounding procedure is called to update the dual information.
The rationale behind this rule is to use the current dual information as long as some progress
is made, and to perturb the linearization factors only when it becomes clear that no further
improvement can be performed. The second parameter, tBI

max, represents the number of bundle
iterations (each corresponding to the solution of a Lagrangean subproblem) performed
before returning to SS/LP iterations with updated dual information. Subsequently, every
time the SS/LP procedure updates the dual values, the bundle method is restarted using
the same information available to it the last time it was stopped. To summarize, the SS/LP
procedure proceeds as follows:

1. Set Z∗ = +∞, t = 0 and ρk
i j (t) = fi j/ui j ∀(i, j) ∈ A, k ∈ K .

2. Set � = 0, Z∗
LP = +∞ and tLP = 0.

3. Solve MMCF(ρ(t)); let x̃ be the optimal solution and Z (t) the corresponding upper
bound.

4. If Z∗ > Z (t), then Z∗ = Z (t).
5. If Z∗

LP = +∞, then Z∗
LP = Z (t); go to Step 7.

6. If Z∗
LP > Z (t), then Z∗

LP = Z (t) and tLP = 0; otherwise, tLP = tLP + 1.
7. t = t + 1.
8. If t = tmax, stop the procedure.
9. If tLP = tLP

max, then set Z∗
LP = +∞ and tLP = 0, call the bundle method for t B I

max
iterations, and then update the dual information � according to (13).

10. Update ρ(t) using formula (17), and go to Step 3.

Note that by setting tLP
max to tmax, the SS/LP procedure simulates the behavior of the SS

procedure, since then � is never updated and remains at value 0. In this case, formula (17)
reduces to (12), and the two procedures are identical.

532 CRAINIC, GENDRON AND HERNU

4. Long-term memory (LM)

Although the Lagrangean perturbation allows the heuristic to search the solution space more
thoroughly than the simple SS procedure, the two variants, SS and SS/LP, tend to explore
solutions that remain around the same regions of the solution space (Section 6 presents
computational evidence). Hence, to further improve the performance of the heuristic, one
needs additional mechanisms to intensify the search into more promising regions, and
to diversify the search when it is believed that no significant progress can be made by
looking further around the most recently visited regions (see (Glover and Laguna, 1997)
for additional explanations on the notions of intensification and diversification).

The mechanisms we propose are based on a long-term memory which stores informations
gathered during the whole history of the search. More specifically, at iteration t ≥ 0,
the memory contains three informations for each triplet (i, j, k), where (i, j) ∈ A and
k ∈ K : nk

i j , the number of iterations where x̃ k
i j > 0; x̄ k

i j , the average flow, defined as∑
0≤T ≤t x̃ k

i j (T)/(t + 1), where x̃(T) is the solution of MMCF(ρ(T)); and x̂ k
i j , the maximum

flow defined as max0≤T ≤t x̃ k
i j (T).

If the objective is to perform intensification, the corresponding mechanism attempts to
make more “interesting” the triplets (i, j, k) that attract flow frequently (measured by nk

i j)
and to make less “interesting” the triplets that are rarely used. Conversely, the diversification
mechanism attempts to make less “interesting” the triplets that are frequently used and to
make more “interesting” the triplets that rarely attract flow. To make a given triplet more
or less “interesting”, the linearization factors are modified using the ratio vk

i j = x̄ k
i j/x̂ k

i j ,
which measures the “variability” of the flow activity related to triplet (i, j, k) (to complete
the definition, we set vk

i j = 0, when x̂ k
i j = 0): if vk

i j approaches 1, the amounts of flow
attracted by (i, j, k) show small variations along the iterations, while if vk

i j approaches
0, the amounts of flow attracted by (i, j, k) vary significantly along the iterations. When
performing intensification, we favor the triplets that show less “variability” and penalize
those with more “variability”. On the contrary, when performing diversification, we favor
the triplets with more “variability” and penalize those with less “variability”.

When performing an intensification or a diversification, the linearization factors are
modified in two ways. First, since the update of the linearization factors given by (17)
implies that some may have a negative value (because π is unrestricted in sign), they
are normalized in such a way that ρ(t) ≥ 0: if ρmin(t) = min{0, min(i, j,k) ρ

k
i j (t)}, we set

ρk
i j (t) = ρk

i j (t)−ρmin(t), ∀(i, j) ∈ A, k ∈ K . Second, if we want to make more “interesting”
a given triplet (i, j, k), we decrease its linearization factor by multiplying it with some
value dependent of vk

i j and smaller than 1 (this is why we need to ensure first that ρ ≥ 0).
Conversely, if we want to make less “interesting” a given triplet (i, j, k), we increase its
linearization factor by multiplying it with some value dependent of vk

i j and larger than 1.
More precisely, when performing an intensification step, we apply the following rules:

1. Normalize ρ to satisfy ρ ≥ 0.
2. If nk

i j ≥ δ+, then

ρk
i j = ρk

i j

(
1 − vk

i j

)
, (i, j) ∈ A, k ∈ K . (18)

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 533

3. If nk
i j < δ−, then

ρk
i j = ρk

i j

(
2 − vk

i j

)
, (i, j) ∈ A, k ∈ K . (19)

Conversely, when performing a diversification step, we apply the following rules:

1. Normalize ρ to satisfy ρ ≥ 0.
2. If nk

i j ≥ δ+, then

ρk
i j = ρk

i j

(
1 + vk

i j

)
, (i, j) ∈ A, k ∈ K . (20)

3. If nk
i j < δ−, then

ρk
i j = ρk

i j

(
vk

i j

)
, (i, j) ∈ A, k ∈ K . (21)

The parameters δ+ and δ− measure the triplets that frequently and rarely attract flow,
respectively. We compute them as follows: δ+ = n̄ + ω+sn and δ− = n̄ − ω−sn , where
n̄ and sn are, respectively, the average and standard deviation measures for nk

i j , ∀(i, j) ∈
A, k ∈ K , while ω+ and ω− are parameters. Typically, most triplets (i, j, k) are very rarely
used, so n̄ is close to 0. Consequently, setting ω− to a significant positive value would imply
a negative value of δ−, and in this case, no triplet would be identified as rarely used. This
is why we use ω− = 0 in all tests reported in Section 6. Similarly, we should not use too
large values for ω+, but typically values in the interval [0, 1] show good performance.

The decisions related to when to perturb the linearization factors according to the in-
formations stored in the long-term memory and whether to perform an intensification or a
diversification are explained in the next section.

5. Overall procedure (SS/LP/LM)

The overall procedure organizes the computations into multiple phases, where each phase
corresponds to the execution of several iterations of procedure SS/LP, until some stopping
criteria are met. These stopping criteria are based on storing the value of the best overall
solution found during the current phase, Z∗

local. Two parameters are used: t>
max, the maximum

number of consecutive iterations without improving Z∗
local (Z (t) > Z∗

local for t>
max consecutive

iterations); t=
max, the maximum number of consecutive iterations without modifying Z (t)

(Z (t) = Z (t − 1) for t=
max consecutive iterations).

Once a phase has stopped based on these criteria, we perform an LM perturbation of the
linearization factors. The decision as to whether use an intensification or a diversification
depends on comparing the value of the best solution found during that phase, Z∗

local, to the
value of the best solution found prior to the current phase, Z∗. We apply intensification if
Z∗

local < Z∗ and diversification otherwise. The rationale is to apply intensification when the

534 CRAINIC, GENDRON AND HERNU

best solution at the current phase improves upon Z∗. If for several consecutive phases, the
condition Z∗

local < Z∗ is satisfied, no diversification will take place. Similarly, if Z∗
local ≥ Z∗

for several successive phases, no intensification will take place. To allow for both types of
perturbation, intensification and diversification, to happen at regular intervals, we limit the
number of consecutive applications of intensification or diversification, using the parameters
T inten

max and T diver
max . Finally, we apply intensification or diversification on the linearization

factors corresponding to the best solution found during the current phase.
At the end of each phase, it is possible to improve Z∗

local by applying the following
local improvement step. Given the solution (x̃, ỹ) corresponding to Z∗

local, one can set the
linearization factors corresponding to “closed” arcs (with ỹi j = 0) to very high values
(thus forbidding the flows to pass through these arcs) and to 0 the linearization factors
corresponding to “open” arcs (with ỹi j = 1). We then solve the corresponding MMCF(ρ),
which provides a solution that is optimal with respect to the original transportation costs,
given the arc configuration defined by ỹ. If the new solution obtained improves upon Z∗

local,
which is often the case, it replaces it. This local improvement step can be seen as a form of
intensification.

The overall procedure can be summarized as follows:

1. Set Z∗ = +∞, t = 0, T inten = 0, T diver = 0 and ρk
i j (t) = fi j/ui j ∀(i, j) ∈ A, k ∈ K .

2. Set � = 0, Z∗
LP = +∞ and tLP = 0.

3. Set Z∗
local = +∞, t> = 0 and t= = 1.

4. Solve MMCF(ρ(t)); let x̃ be the optimal solution and Z (t) the corresponding upper
bound.

5. If Z∗
local > Z (t), then Z∗

local = Z (t) and t> = 0; otherwise, t> = t> + 1.
6. If Z∗

LP = +∞, then Z∗
LP = Z (t); go to Step 8.

7. If Z∗
LP > Z (t), then Z∗

LP = Z (t) and tLP = 0; otherwise, tLP = tLP + 1.
8. t = t + 1.
9. If t = tmax, go to Step 16.

10. If Z (t) = Z (t − 1), then t= = t= + 1; otherwise, t= = 1.
11. If tLP = tLP

max, then Z∗
LP = +∞ and tLP = 0, call the bundle method for t B I

max iterations,
and then update the dual information � according to (13).

12. Update ρ(t) using formula (17).
13. If t> < t>

max and t= < t=
max, go to Step 4.

14. Perform local improvement.
15. If (Z∗

local < Z∗ or T diver ≥ T diver
max) and T inten < T inten

max , perform intensification, set
T inten = T inten + 1, and if T diver ≥ T diver

max , set Tdiver = 0; otherwise, perform diversifi-
cation, set T diver = T diver + 1, and if T inten ≥ T inten

max , set Tinten = 0.
16. If Z∗ > Z∗

local, then Z∗ = Z∗
local.

17. If t = tmax, stop the procedure.
18. Go to Step 3.

It is worth noting that by appropriately setting the parameters, the procedure can simulate
the behavior of the SS/LP procedure. Indeed, when t>

max = t=
max = tmax, only one phase is

performed, which corresponds to the execution of procedure SS/LP. Since the latter can also

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 535

be used to simulate the behavior of the SS procedure, we will use only an implementation
of the SS/LP/LM procedure to measure the performance of the three procedures in the next
section.

6. Computational experiments

The SS/LP/LM procedure has been implemented in C++, using CPLEX (version 6.6) to
solve the linear multicommodity minimum cost network flow problem at each iteration
and during the local improvement step. The optimal basis at the last iteration is used to
initialize the dual simplex algorithm of CPLEX. Although probably not the most efficient
code for solving multicommodity minimum cost network flow problems, CPLEX provides
a robust environment to test the effectiveness of the SS/LP/LM procedure and to investigate
its ability to identify good solutions using a “reasonable” computing effort. To define such
a “reasonable” effort, we limit the number of iterations to tmax = 400, which corresponds
roughly to the number of multicommodity minimum cost network flow problems solved by
the tabu cycle/path relinking method (Ghamlouche, Crainic, and Gendreau, 2004), in the
tests reported by the authors. Since they used the same set of instances as ours, this will
allow for a fair comparison between the two approaches.

The experiments were performed on a Sun Enterprise 10000 with 64 CPUs (with each
CPU operating at 450 MHz) and 64 GBs of RAM memory. The code is compiled with the
g++ compiler using the -O option. The initial multiplier adjustment and parameter setting
of the bundle method for each of the two tested relaxations (SP and CK) are documented
in Crainic, Frangioni, and Gendron (2001).

We have run our tests on 196 problem instances obtained from a network generator similar
to the one described in Gendron and Crainic (1994, 1996). When provided with target values
for |N |, |A|, and |K |, this generator creates arcs by connecting two randomly selected nodes
(no parallel arcs are allowed). It proceeds similarly to create commodities. Costs, capacities,
and demands are then generated, uniformly distributed over user-provided intervals. Capaci-
ties and costs can then be scaled to obtain networks with various degrees of capacity tightness
and relative importance of fixed costs. Two ratios are used for this purpose: the capacity ratio
C = |A|T/

∑
(i, j)∈A ui j and the fixed cost ratio F = |K | ∑(i, j)∈A fi j/T

∑
k∈K

∑
(i, j)∈A ck

i j ,
where T = ∑

k∈K dk . Capacities and fixed costs are adjusted so that these ratios come close
to user-provided values. In general, when C approaches 1, the network is lightly capacitated
and becomes more congested as C increases. When F is close to 0, the fixed costs are low
compared to the transportation costs, while their relative importance increases with F .

The instances are divided into three classes. Class I consists of instances with a large
number of commodities, especially relative to the number of nodes, while Class II is made
of instances with number of nodes approximately equal or larger than the (small) number of
commodities. Class III instances have been specifically generated to make problem charac-
teristic versus performance analyses easier. Nine networks are generated in each subclass,
by combining three arc-densities, roughly 25%, 50% and 75%, with three commodity-
densities, roughly 10%, 25% and 50% (the density is the ratio with respect to |N ||N − 1|).
For each of these nine networks, nine problem instances are created by combining three
values of F—0.01, 0.05, and 0.1—with three values of C : 1, 2 and 8. Several problem

536 CRAINIC, GENDRON AND HERNU

Table 1. Classification of instances according to problem dimension.

Class I (31) Class II (12) Class III (153)

20,230,40 (3) 25,100,10 (3) 10,35,10 (6) 20,120,40 (9)

20,300,40 (4) 100,400,10 (3) 10,60,10 (6) 20,220,40 (9)

30,520,100 (4) 25,100,30 (3) 10,85,10 (6) 20,320,40 (9)

30,700,100 (4) 100,400,30 (3) 10,35,25 (9) 20,120,100 (9)

20,230,200 (4) 10,60,25 (9) 20,220,100 (9)

20,300,200 (4) 10,85,25 (9) 20,320,100 (9)

30,520,400 (4) 10,35,50 (9) 20,120,200 (9)

30,700,400 (4) 10,60,50 (9) 20,220,200 (9)

10,85,50 (9) 20,320,200 (9)

instances were also created for each network in classes I and II to represent various F
and C ratio values. Table 1 summarizes the characteristics of the 196 problem instances in
the three classes according to problem dimension represented by a triplet |N |,|A|,|K |. The
number of instances is displayed between parentheses (infeasible problem instances have
been discarded).

The next subsection presents the result analysis of the SS/LP/LM procedure and its
variants on the three classes of instances, while the second subsection is dedicated to
comparative analyses with a state-of-the-art commercial solver and several tabu search-
based meta-heuristics:

• CPLEX: This is the branch-and-bound method implemented in CPLEX (version 7.1), used
to solve the MIP formulation presented in Section 1. The experiments were performed
on the Sun Enterprise 10000 for a maximum of 10 hours of CPU time. Although this
is sufficient to identify the optimal solution for many instances, only feasible solutions
are obtained for some other instances, while no feasible solutions are found for a few
instances.

• Tabu Path: This is the tabu search heuristic described in Crainic, Gendreau, and Fravolden
(2000). Although this paper does not provide the detailed results on each of the 196
instances, we have obtained them from the authors. Results were obtained on SUN
UltraSparc 1/140 Workstations with 64 MB of RAM memory. In this approach, there is
no separate resolution of multicommodity minimum cost network flow subproblems.

• Tabu Cycle: This is the tabu search-based heuristic described in Ghamlouche, Crainic,
and Gendreau (2003). The detailed results are derived from Ghamlouche, Crainic, and
Gendreau (2004) where the approach is compared to the path relinking method. The
multicommodity minimum cost network flow problems are solved with CPLEX (ver-
sion 6.5). The machine used is the Sun Enterprise 10000, as in our experiments, and
the stopping criterion is a maximum of 400 iterations (which roughly corresponds
to the solution of the same number of multicommodity minimum cost network flow
problems).

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 537

• Path Relinking: This is the path relinking method described in Ghamlouche, Crainic, and
Gendreau (2004), which extends the tabu cycle approach (by adding some diversification
capabilities), and as such, exhibits similar implementation characteristics.

6.1. Analysis of SS/LP/LM and variants

We tested and compared the SS/LP/LM procedure and its variants, and analyzed the impact
of a number of key parameters. In the following, we summarize the main findings and
present aggregated results that support them (detailed results can be obtained from the
authors).

For this phase of the computational experiments, we use as a performance measure the
GAP (Z∗ − Zbest)/Zbest between the upper bound Z∗ obtained by the procedure and the best
available upper bound Zbest. The latter corresponds to the smallest upper bound identified
by the four methods CPLEX, Tabu Path, Tabu Cycle, and Path Relinking. The aggregated
results are obtained through averaging the performance measure over all instances in a class.
Note that, although averaging over such large sets of instances with so varied characteristics
might appear coarse, it proves remarkably reliable, as more detailed instance-by-instance
analyses have revealed similar results and tendencies.

We first study the impact of the Lagrangean perturbation approach. We compare the pure
slope scaling procedure (SS) to the slope scaling procedure with Lagrangean perturbation
(SS/LP) using either the shortest path (SP) or the continuous knapsack (CK) relaxation
method. The parameters of the SS/LP procedure assume values tLP

max = 10 and t B I
max = 10.

Other values were tried, but the results did not vary significantly. Table 2 displays the
average GAP (%) obtained by the three approaches. On each problem class, at least one of
the variant of the SS/LP procedure generally slightly improves, on average, over the SS
procedure. On Class I, the SP variant is generally superior to the CK relaxation, while the
reverse is observed on the two other classes. A detailed instance-by-instance analysis also
reveals that the SS procedure and the best variant of SS/LP for each problem class found
the same solution for 34% of instances. For the remaining instances, the SS/LP procedure
finds better solutions than the SS procedure for 60% of them.

Since the Lagrangean perturbation only marginally improves upon the pure slope scaling
approach, one might ask whether the long-term memory perturbation would introduce
enough diversification, so that the effect of the Lagrangean perturbation would be further
diminished. Indeed, when the SS/LP/LM procedure is performed (see below), with and
without Lagrangean perturbation, the two approaches find the same solution for 48% of the
instances. Yet, for the remaining instances, the Lagrangean perturbation identifies better
solutions than the pure slope scaling approach for 56% of them. Given the slight superiority
of the Lagrangean perturbation, we have decided to use it for the remaining tests, the SP
relaxation being used for Class I instances, and the CK one for the other classes of instances.
It should be noted, however, that the results would not vary significantly if the Lagrangean
perturbation were not be used.

We now turn to the long-term memory and examine the parameters that impact on the
performance of the global procedure. Four parameters determine the procedure: T inten

max and
T diver

max , indicating the maximum number of consecutive applications of intensification and

538 CRAINIC, GENDRON AND HERNU

Table 2. Comparison of Lagrangean perturbation methods (GAP %).

SS SS/LP (SP) SS/LP (CK)

20,230,40 (3) 1.02 1.09 1.31

20,300,40 (4) 1.57 1.58 1.59

30,520,100 (4) 11.03 11.49 11.90

30,700,100 (4) 10.57 11.39 12.12

20,230,200 (4) 15.04 13.22 13.68

20,300,200 (4) 6.45 4.94 6.10

30,520,400 (4) 13.37 12.90 11.70

30,700,400 (4) 7.68 5.44 7.16

Average (Class I) 8.58 7.97 8.42

25,100,10 (3) 6.70 6.37 6.37

100,400,10 (3) 15.98 16.81 14.38

25,100,30 (3) 3.06 3.58 3.07

100,400,30 (3) 8.32 7.68 7.67

Average (Class II) 8.52 8.61 7.87

10,35,10 (6) 0.92 0.91 0.91

10,60,10 (9) 2.34 2.34 2.34

10,85,10 (9) 2.50 2.34 2.23

10,35,25 (6) 0.66 0.57 0.63

10,60,25 (9) 4.76 4.91 5.34

10,85,25 (9) 7.88 6.42 7.89

10,35,50 (6) 0.75 0.54 0.54

10,60,50 (9) 6.80 6.62 5.65

10,85,50 (9) 9.59 9.02 9.02

20,120,40 (9) 6.47 6.38 6.63

20,220,40 (9) 15.43 16.65 15.29

20,320,40 (9) 11.93 14.60 13.08

20,120,100 (9) 3.56 3.39 3.51

20,220,100 (9) 10.99 10.94 11.17

20,320,100 (9) 17.74 16.83 17.66

20,120,200 (9) 2.69 2.65 2.65

20,220,200 (9) 6.34 6.62 5.81

20,320,200 (9) 8.83 9.96 9.20

Average (Class III) 7.02 7.12 6.99

diversification steps, respectively; ω− and ω+, defining the triplets that frequently and rarely
attract flow, respectively (see Section 4).

Setting T inten
max = tmax and T diver

max = 0 implies that the procedure performs only inten-
sification. Symmetrically, T inten

max = 0 and T diver
max = tmax forces the procedure to perform

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 539

diversification steps only. In the meta-heuristic literature, smaller number of repetitions and
more balanced approaches are generally used. We observed, in fact, that setting either T inten

max
or T diver

max to values greater than 2 implies very long intensification or diversification phases
that, in practice, forbid the other one from being executed. A (1,1) value has the procedure
pass from one phase to the other irrespective whether the current phase is improving the
solution or not. A more balanced approach is offered by setting the two parameters at 2: an
improving trend will not be immediately interrupted, but there is sufficient time to execute
both phases.

Turning to the ω parameters, as indicated in Section 4, ω− must be set to 0 and values for
ω+ should not be too large. Actually, values in the [0, 1] interval show good performance,
combinations with ω+ = 1 usually displaying better results than other settings. Yet the case
ω+ = 0 is also interesting, since in this case all costs are modified at every intensification
or diversification step. Table 3 displays the results for the four sets of parameters that best
illustrate the impact of the intensification/diversification alternation strategy, where each
parameter set is represented by a quadruplet (T inten

max , T diver
max , ω−, ω+).

From the results displayed in the table, it appears that performing only diversification
is detrimental to the performance of the method for the instances in Class I and Class
III (surprisingly, on the instances of Class II, this combination is, on average, slightly
better than performing intensification only). It is clear, however, that a combined and bal-
anced utilization of intensification and diversification (third parameter setting) outperforms
extreme procedure designs (intensification or diversification only). This observation is con-
sistent with the state-of-the-art in the meta-heuristic literature (see for example (Glover
and Laguna, 1997)). In the last column, we show the results obtained with a combination
similar to the third one, but with ω+ = 0 instead of ω+ = 1. The results of this combination
are, on average, worse than those observed with the third setting, except for the instances
of Class II, which confirms that a high degree of diversification is indicated for these
instances.

It should also be noted that the results in Table 3 are significantly better than those
displayed in Table 2. This indicates that the long-term memory and the intensification
and diversification mechanisms added to the procedure are instrumental in achieving high
performance for this type of heuristic. Based on these results, we have used the long-term
memory variant in the remaining experiments, that is, the SS/LP/LM procedure with the
third parameter setting (2,2,0,1), for Class I and Class III instances, and the fourth parameter
setting (2,2,0,0), for Class II instances.

To complete the analysis, we include two graphs displaying the evolution of the bound
over time for the three variants, SS, SS/LP, and SS/LP/LM, for a relatively easy problem
(100, 400, 10) (figure 1), and probably the most difficult instance in the whole set (30,
700, 400) (figure 2). For each graph, the x axis gives the iteration count, while the y
axis gives the solution value. Circles indicate solutions found by the local improvement
step. In the first case, easy problem (figure 1), Path Relinking gives the best solution, and
SS/LP slightly improves upon SS. Intensification and diversification mechanisms work
well: the local improvement step slightly improves the bound, and the long-term memory
perturbation drives the search to find new, better solutions, even though diversification
initially deteriorates the solution value significantly. For the difficult problem (figure 2),

540 CRAINIC, GENDRON AND HERNU

Table 3. Analysis of long-term memory utilization (GAP %).

(400,0,0,1) (0,400,0,1) (2,2,0,1) (2,2,0,0)

SS/LP(SP)/LM

20,230,40 (3) 0.86 0.70 0.84 0.84

20,300,40 (4) 1.07 1.07 1.07 1.07

30,520,100 (4) 7.14 8.57 7.23 7.74

30,700,100 (4) 7.83 8.55 7.60 8.40

20,230,200 (4) 7.65 7.50 7.37 7.79

20,300,200 (4) 6.54 9.08 5.82 6.15

30,520,400 (4) 2.64 2.66 2.51 2.84

30,700,400 (4) −2.03 13.06 −2.03 −2.11

Average (Class I) 4.06 6.58 3.89 4.19

SS/LP(CK)/LM

25,100,10 (3) 5.37 5.61 3.28 3.17

100,400,10 (3) 11.04 12.34 10.37 7.78

25,100,30 (3) 2.46 1.93 1.99 1.43

100,400,30 (3) 6.33 4.54 4.29 4.56

Average (Class II) 6.30 6.10 4.98 4.24

SS/LP(CK)/LM

10,35,10 (6) 0.59 0.23 0.41 0.41

10,60,10 (9) 1.64 0.75 0.89 0.54

10,85,10 (9) 1.54 1.79 1.58 1.46

10,35,25 (6) 0.53 0.03 0.03 0.03

10,60,25 (9) 3.25 1.05 3.05 3.12

10,85,25 (9) 4.81 2.67 3.34 3.39

10,35,50 (6) 0.50 0.14 0.25 0.42

10,60,50 (9) 3.24 2.34 1.42 1.61

10,85,50 (9) 5.21 4.34 3.65 3.62

20,120,40 (9) 4.80 4.10 3.74 3.50

20,220,40 (9) 9.26 11.37 9.03 9.45

20,320,40 (9) 9.01 10.03 8.36 8.10

20,120,100 (9) 2.40 1.95 2.11 2.08

20,220,100 (9) 5.07 5.06 4.77 4.86

20,320,100 (9) 9.62 16.15 7.92 9.04

20,120,200 (9) 1.98 1.81 1.86 1.96

20,220,200 (9) 2.48 2.93 2.63 2.94

20,320,200 (9) 2.33 17.49 2.23 2.21

Average (Class III) 3.98 4.95 3.36 3.44

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 541

Figure 1. Problem (100, 400, 10).

Figure 2. Problem (30, 700, 400).

542 CRAINIC, GENDRON AND HERNU

Path Relinking is still better than SS and SS/LP, but the full hybrid SS/LP/LM procedure
yields the best solution. Again, SS/LP is slightly better than SS. The long-term memory
mechanisms perform well, and the local improvement step significantly improves the bound.
These examples, typical of what might be observed over the entire problem set, emphasize

Table 4. Comparison with other methods (GAPSS % (NBest)).

CPLEX Tabu path Tabu cycle Path relinking

20,230,40 (3) 0.83 (0) 0.64 (0) 0.66 (0) 0.71 (0)

20,300,40 (4) 1.05 (0) 0.80 (0) 0.56 (1) 0.72 (0)

30,520,100 (4) 6.64 (0) 0.70 (2) 3.26 (0) 3.36 (0)

30,700,100 (4) 7.01 (0) 2.38 (0) 4.77 (0) 5.36 (0)

20,230,200 (4) 6.78 (0) −20.54 (4) 0.78 (2) 1.56 (1)

20,300,200 (4) 5.43 (0) −14.21 (4) −0.34 (3) 1.30 (1)

30,520,400 (4) 3.41 (0) −7.06 (4) −1.63 (3) 0.16 (3)

30,700,400 (4) −∞(4) −10.79 (4) −4.74 (4) −2.08 (4)

Average (Class I) 4.68 (4) −6.22 (18) 0.40 (13) 1.41 (9)

25,100,10 (3) 3.01 (0) −0.11 (2) 2.55 (0) 3.01 (0)

100,400,10 (3) 5.59 (0) 2.70 (2) 5.59 (1) 6.61 (1)

25,100,30 (3) 1.40 (0) −0.49 (1) −0.70 (2) 0.37 (2)

100,400,30 (3) 4.21 (1) −2.61 (3) 2.95 (1) 3.78 (0)

Average (Class II) 3.55 (1) −0.13 (8) 2.60 (4) 3.44 (3)

10,35,10 (6) 0.41 (0) −0.21 (2) 0.41 (0) 0.41 (0)

10,60,10 (9) 0.87 (0) −0.9 (5) 0.65 (1) 0.79 (1)

10,85,10 (9) 1.53 (0) −0.47 (4) 0.85 (1) 1.49 (0)

10,35,25 (6) 0.03 (0) −0.54 (4) −1.38 (4) −0.21 (2)

10,60,25 (9) 2.82 (0) 0.18 (6) 2.04 (2) 2.47 (1)

10,85,25 (9) 3.19 (0) −0.67 (5) 1.34 (2) 2.80 (0)

20,120,40 (9) 3.56 (0) −1.17 (6) 1.18 (2) 2.26 (0)

20,220,40 (9) 8.01 (0) 0.48 (3) 4.05 (2) 4.80 (1)

20,320,40 (9) 7.59 (0) 1.72 (2) 4.02 (1) 5.69 (0)

10,35,50 (6) 0.25 (0) −0.28 (2) −1.22 (5) −0.35 (5)

10,60,50 (9) 1.38 (0) −6.16 (7) −0.92 (7) 0.26 (5)

10,85,50 (9) 3.47 (0) −5.12 (6) 0.89 (2) 2.02 (1)

20,120,100 (9) 2.01 (0) −6.68 (9) −0.86 (7) 0.05 (4)

20,220,100 (9) 4.47 (0) −11.61 (7) −0.67 (5) −0.25 (5)

20,320,100 (9) 7.21 (0) −11.94 (8) 0.72 (4) 2.86 (3)

20,120,200 (9) 1.80 (0) −6.02 (9) −2.85 (9) −2.60 (8)

20,220,200 (9) 2.53 (0) −21.10 (9) −4.05 (9) −2.74 (7)

20,320,200 (9) 2.01 (3) −20.88 (9) −5.22 (7) −4.71 (6)

Average (Class III) 3.11 (3) −5.35 (103) −0.02 (70) 0.89 (49)

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 543

the central role of the long-term memory, and of the intensification and diversification
mechanisms, in establishing the good performance of the method.

6.2. Comparisons with other methods

We now compare the results of the SS/LP/LM procedure with those obtained by the four
other methods, CPLEX, Tabu Path, Tabu Cycle and Path Relinking. In Table 4, we display
two measures for each of these four methods: (1) GAPSS, the gap (ZSS − Z∗)/ZSS between
the upper bound Z∗ obtained by the respective method and the upper bound ZSS found by
the SS/LP/LM procedure (thus, a negative value indicates that the SS/LP/LM procedure has
identified a better solution than that found by the method; the result is an average over all
problem instances in each class); (2) In between parentheses, NBest, the number of instances
where the SS/LP/LM procedure has identified a better solution than the corresponding
method.

We observe that the SS/LP/LM procedure provides solutions that are, on average, within
5% of optimality, as indicated by the gap with respect to CPLEX. It is also competitive
with the other heuristics. It generally outperforms Tabu Path, and displays solutions that
are close, or even better, than those found by Tabu Cycle and Path Relinking. Since the
latter is the most effective of the three competing heuristic methods, we now focus on the
comparison with this approach.

Path Relinking remains, on average, the most effective heuristic. We note, however,
that SS/LP/LM generally obtains better solutions for instances with a large number of
commodities (200 and more): in Class I, SS/LP/LM finds better solutions for 9 out of 16
instances, while in Class III, SS/LP/LM identifies better solutions for 21 out of 27 instances.
A detailed instance-by-instance analysis also reveals that, for the 20-node instances in
Class III with the highest fixed cost ratio (F = 0.1), SS/LP/LM obtains better solutions for
16 out of 27 instances. These results indicate that SS/LP/LM is generally more effective than
Path Relinking on larger, more difficult, instances. For seven of these difficult instances,
SS/LP/LM even identifies the best known solution, outperforming not only Path Relinking,
but also the branch-and-bound method of CPLEX executed for 10 hours of CPU time
(note that for the four Class I instances of dimension (30, 700, 400), CPLEX could not
identify a feasible solution, hence we display an average gap of −∞ for this subclass, and
we do not consider these instances when computing the average gap for Class I). These
results emphasize that the SS/LP/LM heuristic is not only competitive with the current best
heuristics for MCFP, but also that it might become the algorithm of choice for problems
with a large number of commodities.

7. Conclusion

We have presented a slope scaling heuristic for solving the multicomodity capacitated
fixed-charge network design problem. The heuristic integrates a Lagrangean perturbation
scheme and intensification/diversification mechanisms based on long-term memories. Com-
putational experiments performed on a large set of problem instances have shown that

544 CRAINIC, GENDRON AND HERNU

the intensification and diversification components of the algorithm are essential for the
approach to be effective. This emphasizes the gains that may be achieved in combinatorial
optimization by bringing together mathematical programming and meta-heuristic elements
into comprehensive solution algorithms.

The computational experiments have also demonstrated that the proposed method is
competitive with the best known heuristic approaches for the problem, and that it generally
provides better solutions on larger, more difficult, instances. It even identifies the best
known solution for some instances, providing solutions that are better than those obtained
by CPLEX after 10 hours of CPU time.

Several fascinating research avenues are open following this work. In particular, im-
provements in the efficiency of the procedure could be achieved by substituting the general-
purpose solver (CPLEX) with an adaptation of a decomposition method to solve the multi-
commodity minimum cost network flow problems at each iteration (e.g., a bundle method,
a resource-decomposition approach, or a column generation algorithm). This might impact
not only on the efficiency of the procedure, but also on its effectiveness. Also, since the
SS/LP/LM and Path Relinking approaches appear complementary, a hybrid algorithm that
integrates them both seems indicated. Its implementation in a parallel environment opens
the way for several challenging, but promising research issues.

Acknowledgments

Funding for this project has been provided by the Natural Sciences and Engineering Coun-
cil of Canada, through its Research Grant programs, and by the Fonds F.C.A.R. of the
Province of Québec. We also thank the RQCHP—Réseau Québecois de Calcul de Haute
Performance—for its assistance in providing computing facilities and Mr. François Guertin’s
time. The RQCHP has been created through the financial support of the Canada Foundation
for Innovation, the Ministry of Education of the Province of Québec and the industrial
partners SGI, SUN, NEC, and IBM.

While working on this project, Dr. T.G. Crainic was Adjunct Professor at the Département
d’informatique et de recherche opérationnelle of the Université de Mntréal.

References

Balakrishnan, A., T.L. Magnanti, and P. Mirchandani. (1997). “Network Design.” In M. Dell’Amico, F. Maffioli,
and S. Martello (Eds.), Annotated Bibliographies in Combinatorial Optimization. New York, NY: John Wiley
& Sons, pp. 311–334.

Crainic, T.G., M. Gendreau, and J. Fravolden. (2000). “A Simplex-Based Tabu Search Method for Capacitated
Network Design.” INFORMS Journal on Computing 12, 223–236.

Crainic, T.G., A. Frangioni, and B. Gendron. (2001). “Bundle-Based Relaxation Methods for Multicommodity
Capacitated Fixed Charge Network Design Problems.” Discrete Applied Mathematics 112, 73–99.

Gendron, B. and T.G. Crainic. (1994). “Relaxations for Multicommodity Capacitated Network Design Problems.”
Publication CRT-965, Centre de recherche sur les transports, Université de Montréal.

Gendron, B. and T.G. Crainic. (1996). “Bounding Procedures for Multicommodity Capacitated Fixed Charge
Network Design Problems.” Publication CRT-96-06, Centre de recherche sur les transports, Université de
Montréal.

SLOPE SCALING/LAGRANGEAN PERTURBATION HEURISTIC 545

Gendron, B., T.G. Crainic, and A. Frangioni. (1999). “Multicommodity Capacitated Network Design.” In B. Sansò
and P. Soriano (Eds.), Chapter 1 in Telecommunications Network Planning. Norwell, MA: Kluwer Academics
Publishers, pp. 1–19.

Ghamlouche, I., T.G. Crainic, and M. Gendreau. (2003). “Cycle Based Neighborhood Structures for Fixed-Charge
Capacitated Multicommodity Network Design.” Operations Research 51(4), 655–667.

Ghamlouche, I., T.G. Crainic, and M. Gendreau. (2004). “Path Relinking, Cycle-Based Neighbourhoods and
Capacitated Multicommodity Network Design.” Annals of Operations Research 131, 109–133.

Glover, F. and M. Laguna. (1997). Tabu Search. Norwell, MA: Kluwer Academic Publishers.
Holmberg, K. and D. Yuan. (2000). “A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capaci-

tated Network Design Problem.” Operations Research 48, 461–481.
Kim, D. and P.M. Pardalos. (1999). “A Solution Approach to the Fixed Charge Network Flow Problem Using a

Dynamic Slope Scaling Procedure.” Operations Research Letters 24, 195–203.
Kim, D. and P.M. Pardalos. (2000a). “Dynamic Slope Scaling and Trust Interval Techniques for Solving Concave

Piecewise Linear Network Flow Problems.” Networks 35, 216–222.
Kim, D. and P.M. Pardalos. (2000b). “A Dynamic Domain Contraction Algorithm for Nonconvex Piecewise Linear

Network Flow Problems.” Journal of Global Optimization 17, 225–234.
Magnanti, T.L. and R.T. Wong. (1984). “Network Design and Transportation Planning: Models and Algorithms.”

Transportation Science 18, 1–55.
Minoux, M. (1989). “Network Synthesis and Optimum Network Design Problems: Models, Solution Methods

and Applications.” Networks 19, 313–360.
Yaged, B. (1971). “Minimum Cost Routing for Static Network Models.” Networks 1, 139–172.

